Peptomyc technology and IP is founded on the knowledge accumulated by Dr. Soucek‘s lab on Omomyc, a dominant-negative Myc mutant that is the most efficacious and safe direct Myc inhibitor to date and that shows great therapeutic promise in a variety -if not all- cancer types.

Omomyc was considered a proof of principle for many years, and its application was to be limited to gene therapy. However, Dr. Soucek’s lab has shown that the Omomyc peptide itself displays excellent cell penetrating properties and can efficiently enter cells and exert a strong anti-Myc activity that results in arrest/death of cancer cells. Peptomyc now is developing the Omomyc mini-protein – and improved variants – into clinically viable therapeutics for the treatment of cancer patients.

Relevant publications:

  1. Garralda E. et al., MYC targeting by OMO-103 in solid tumors: a phase 1 trial. Nature Medicine. 2024. https://rdcu.be/dzCIC
  2. Beaulieu ME et al., Pharmacokinetic Analysis of Omomyc Shows Lasting Structural Integrity and Long Terminal Half-Life in Tumor Tissue Cancers 2023. doi.org/10.3390/cancers15030826
  3. Massó-Valles D, et al., MYC Inhibition Halts Metastatic Breast Cancer Progression by Blocking Growth, Invasion, and Seeding. Cancer Res Comm. 2022;2:110–30. doi: 10.1158/2767-9764.CRC-21-0103
  4. Massó-Valles D, Soucek L. Blocking Myc to Treat Cancer: Reflecting on Two Decades of Omomyc. 2020, 9, 883; doi:10.3390/cells9040883
  5. Beaulieu ME, Soucek L. Finding MYCure. Mol Cell Oncol. 2019 Jun 20;6(5):e1618178. doi: 10.1080/23723556.2019.1618178.
  6. Beaulieu ME, et al. Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Sci Transl Med. 2019 doi:10.1126/scitranslmed.aar5012.
  7. Whitfield JR, Beaulieu ME, Soucek L. Strategies to Inhibit Myc and Their Clinical Applicability. Front Cell Dev Biol. 2017. doi:10.3389/fcell.2017.00010.
  8. Annibali, D., Whitfield, J.R., Favuzzi, E., Jauset, T., Serrano, E., Cuartas, I., Redondo-Campos, S., Folch, G., Gonzalez-Junca, A., Sodir, N.M., et al. (2014). Nature Communications 5, 4632.
  9. Soucek, L., Whitfield, J.R., Sodir, N.M., Masso-Valles, D., Serrano, E., Karnezis, A.N., Swigart, L.B., and Evan, G.I. (2013). Genes & Development 27, 504-513.
  10. Savino, M., Annibali, D., Carucci, N., Favuzzi, E., Cole, M.D., Evan, G.I., Soucek, L., and Nasi, S. (2011). PloS One 6, e22284.
  11. Sodir, N.M., Swigart, L.B., Karnezis, A.N., Hanahan, D., Evan, G.I., and Soucek, L. (2011). Genes & Development 25, 907-916.
  12. Soucek, L., Whitfield, J., Martins, C.P., Finch, A.J., Murphy, D.J., Sodir, N.M., Karnezis, A.N., Swigart, L.B., Nasi, S., and Evan, G.I. (2008). Nature 455, 679-683.
  13. Soucek, L., Nasi, S., and Evan, G.I. (2004). Cell Death and Differentiation 11, 1038-1045.
  14. Soucek, L., Jucker, R., Panacchia, L., Ricordy, R., Tato, F., and Nasi, S. (2002). Cancer Research 62, 3507-3510.
  15. Soucek, L., Helmer-Citterich, M., Sacco, A., Jucker, R., Cesareni, G., and Nasi, S. (1998). Oncogene 17, 2463-2472.